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PARAMETRIC DIFFERENCE IN TERMS OF CONTIGUOUS RELATIONS. 

 

Dr.Sanjeev Kumar Mishra   

M.Sc, B.Ed ,Ph.D   (Mathematics)    

 

Abstract:   

Here we have defined a parametric difference ( ) on a hypergeometric series and 

found the n
th

 difference of contiguous relations. We have taken special case 2F1.This 

parametric difference also shown in terms of contiguous relations. 

 

1 -Introduction 

The idea of extending the number of Parameters in the hypergeometric function seems to 

have occurred for the first time, in th work of clause(1828). He introduced a series with three 

numerator parameters and two denominator parameters. . Over the next hundred years the well 

known set of special summation theorems associated with the names of Soalschutz (1980) dixon 

(1903) and Dougall’s (1907) were developed these are all for series in which A= B+1 and Z=1 . 

It can be shown that Dougall , s theorem, giving the sum of a 7F6   Series, is the most general 

possible theorem of this  kind, the whole theory as it existed then was analysed exhaustively and 

brought to perfection by W.N.Bailey, in a long series of Papers during the decades of 1920-50. 

Indeed at this time L.J. Rogers is reported to have said” Nothing remains to be done in the field 

of hypergeometric series. 

The whole theory of the general function A F B (Z) was still untouched. The first attempts 

at a general transformation theory were already being made by whipple (1934,1937) and the 

concept of the asymptotic expansions for the function were already implicit in the work of 

Barnes (1970a).  

 

2- Formulations: 

i.        F  = F (a,b; c; z) 

ii            F (1
-
)  = F (a+1, b+1; c+1; Z) 

http://m.sc/
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iii           F   = F (1
+
) – F       

iv.     [(c; a; b); n]  = [A, n]  

=       (c)n        

   (a)n   (b)n 

      v.  Particular case [A, o]  =      1 

      vi.   F =  

      vii.   D                       

 

2.1 Theorem: For hypergeometric function 2F1  (a,b; c; z) 

 
n 

F  = 
n-r

D
r
F 

 Proof: Let 

 F  = F ( a+1 b+1;c;z) –  F(a,b; c; z) 

 /                               [A, 1] D – [A,0]                 

 
2 

F             =  [ F] 

            /
2 

            [A, 1] D
2 

– 
2
c1[A, 1] D + 

2
c2 [A, 0] D

0
                    

            
3  

 [A, 3] D
3 

– 
3
c1[A, 2] D

2
 + 

3
c2 [A, 1] D –[A,0]                                   

Similarly 

 

              /
n  

 [A, n] D
n 

– 
n
c1[A, n-1] D

n-1
 + 

n
c2 [A, n-2] D

n-2
 - …….+(-1)

n
[A,0]            

Or 

          /
n  

        
n-r

D
r 
               

Hence 

 /
n 

F  = 
n-r

D
r
F  

 

 Contigous relations: 
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3.1  Theorem:  To prove that /
n 

F(a, b; c; z) = F[n
+
]-

n
c1 F[(n-1)

+
]+

 n
c2 F[(n-2)

+
]-

 n
c3 

   F[(n-3)
+
]+……………..+(-1)

n
F 

Proof: 

 / F (a, b; c; z) = F[1
+
] – F       

          / 
2
F     = F [2

+
] – 2F [1

+
] + F                 

  /
3
F     = F [3

+
] – 2F [2

+
] + 3F [1

+
] – F     

 /
4
F     = F [4

+
] – 4F [3

+
] + 6F [2

+
] – 4F[1

+
] + F     

Similarly 

 /
n 

F(a, b; c; z) = F[n
+
]-

n
c1 F[(n-1)

+
]+

 n
c2 F[(n-2)

+
]-

 n
c3 F[(n-3)

+
]+……………..+(-1)

n
F  
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